

Better Climate Challenge Working Groups Non-Energy Benefits of Energy Projects-Improving Financial Payback

Kristina Armstrong- Oak Ridge National Laboratory Sarah Cooney- National Renewable Energy Laboratory November 14, 2024

What will we cover today?

- 1. What are Non-Energy Benefits (NEBs)?
- 2. Why NEBs are important?
- 3. What is their connection to business performance?
- 4. How to find and maximize value?
- 5. Improving payback period with NEBs- Examples

Your participation in the meeting is critical to the success of the NEB tool. We kindly request that you be prepared to provide individual feedback, questions, comments, and suggestions.

FACA Notice: In addition, to use our limited time most effectively, we will ask participants to refrain from passing judgment on another participant's recommendations or advice and instead concentrate on their own, individual experiences. It is not the object of this forum to obtain any group position or consensus.

What are NEBs?

Non-energy benefits (NEBs) are the positive outcomes that result from energy efficiency efforts, beyond the direct savings in energy and demand.

NEBs can be beneficial participants in energy efficiency program, the utility system, and society.

Also known commonly known as co-benefits, soft benefits, auxiliary benefits, ot nonenergy impacts.

What are NEBs?

- Additional benefits of energy projects which also impact business performance and objectives
- Help drive down payback for energy projects by quantifying and showcasing additional cost and other benefits

Example of Corporate Responsibility Report

Principle	FY2018	FY2019	FY2020	FY2021	FY2022	2022 Goal Progress
Vibrant Communities						
Annual Vibrant Communities Charitable Giving (U.S. Dollars in Millions)	0	2.8	6.8	5.9	3.0	
Cumulative Charitable Giving Toward 2030 Goal (U.S. Dollars in Millions)	0	2.8	9.1	15	18	
Safety Excellence						
Employee Total Reportable Incident Rate (Number of Incidents x 200,000 /Total Hours Worked)	0.28	0.27	0.36	0.29	0.27	e
Employee Lost Time Incident Rate (Number of Incidents x 200,000 /Total Hours Worked)	0.05	0.04	0.04	0.06	0.07	
Employee Fatalities	0	0	0	0	0	
Contractor Total Reportable Incident Rate (Number of Incidents x 200,000 /Total Hours Worked;	0.23	0.32	0.30	0.15	0.23	e
Contractor Lost Time Incident Rate (Number of Incidents x 200,000 /Total Hours Worked)	0.00	0.02	0.03	0.03	0.03	
Contractor Fatalities	0	1	0	0	0	
Tier 1 Process Safety Event Rate (Number of Events per 100 Workers per Year)	0.04	0.02	0.01	0.03	0.03	
Tier 2 Process Safety Event Rate (Number of Events per 100 Workers per Year)	0.11	0.14	0.13	0.12	0.11	
Distribution Incidents	3	6	3	2	3	
Total Number Significant Spills	0	0	0	0	0	

Why Important? Pillars of Industrial Decarbonization

Industry is responsible 30% of primary energy-related U.S. CO₂ emissions

Energy Efficiency & Electrification are at the heart of decarbonization pillars - *but project implementation needs improvement*

More Implementation Needed!

What will it take to get more manufacturers to implement decarbonization projects?

- **\$** Improve payback period
- **Training** Connect benefits to their business objectives
- Make it easy for available resources to maximize benefits of projects

NEBs Contribute to Strategic Business Goals

NEBs Strategic Contribution Table

- NEBs contribute to Key Performance Metrics (sometimes they are the KPMs)
- Impact Risk, Value, & Cost
- Quantifiable- KPM and associated financial value
- Not all are easily quantifiable but are still important
- Based on research our team created NEBs Strategic Contribution Table with ~50 examples

КРІ	КРМ	NEB	Risk Reduction	Value Proposition Increase	Decrease Costs
Operations- Quality					
	Defect Rate- PPM or DPM	Improved quality-machine performance	Х	Х	X

Example from Table

Let's Brainstorm common NEBs and sort them into KPI/KPM categories

Key Performance Indicators/Metrics

- Strategic Relationship Impacts
- Operations (Productivity/Quality)
- Sustainability/Environmental Impact
- Employee/Workplace Impact (Safety/Engagement)
- Other

How do we find NEBs for an Energy Project?

- Goals & objectives
- Training & guidance on learning about what kind of NEBs are common to different kinds of energy projects
- Understand the full process & problems
 - Impact the facility
 - Impact other operations
- Talk to people!
 - End Users, Maintenance, Safety, Human Resources, Quality

What does this sound like?

Process Improvement- Continuous Improvement

Photo from Microsoft stock image

NEB Finding Guidance Process & JUSTIFI Software

- Utilizes Six Sigma's DMAIC Improvement Process
- Standards
 - -Quality Systems (ISO 9001)
 - -Environmental Management Systems (ISO 14001)
 - Energy Management Systems (ISO50001)

JUSTIFI Key Features

JUSTIFI translates the DMAIC process from the NEB Finding Guidance and Protocol documents into an actionable, user-friendly workflow

DOE IEDO Energy Efficiency & Decarb Software Tools Workflow

50001 Ready Navigator

Energy management

- Resources
- Track progress

VERIFI

Facility energy use

- Utility bill tracking and analysis
- Utility/ GHG savings analysis

MEASUR

System energy use

- Industrial System Analysis
- Treasure Hunts
- Inventory

JUSTIFI

Additional impacts

 Financial & Performance metrics impacts of energy projects

Let's Illustrate with examples

How finding and quantifying NEBs for an energy projects impact KPIs/KPMs and improve payback periods for projects.

Whiteboard Group Exercise- Results

JUSTIFI Example: Cocoa Co.

Value Proposition: "Quality you never forget!"

Performance Metrics: Safety, Quality, On Time Delivery, Cost, & Sustainability

Goals: Increase Revenue 20%, Reduce Defects 10%, & Reduce Energy Cost 20%

Details

- Small manufacturer (SMM), making high quality chocolate bars and candies. Quality drives customer loyalty. Folks from all over central Ohio enjoy touring the chocolate factory.
- Chocolate bar machine rate: 1200 units/hr. Chocolate bar line has 1% defect rate.
- Plant manager **problems**: safety- incidents cost between • \$50K-\$100K each, new sustainability goals, defect rate, need to reduce costs.

General Information	Annual Energy Information
Location: 100 Woodruff Ave,	
Columbus, Ohio 43228	Electricity Use: 100,000,000 kWh
Building Age: 75 years	Electricity Cost: \$0.1/kWh
Building Area: 70,000 ft2	Demand Use: 960 kW
# of Employee (This facility/Total): 150	Demand Cost: \$16.12/kW
Annual Operating Hours: 4160 hrs.	Natural Gas Use: 4,500,000 MMBTU
Annual Sales: \$10.3M	Natural Gas Cost: \$4.00/MMBTU
Annual Production: 3,744,000 units	

JUSTIFI Demo: Cocoa Co. Steam Assessment

Completed Facility Tour:

- Coalesced all pre-visit data and entered it into JUSTIFI
- Engaged operators responsible for steam
 equipment
- Gathered steam systemrelated data
- Gained insights into key performance concerns
- Quantified 3 energy efficiency opportunities

Next Steps:

Explore steam processes / C end uses to identify NEBs

Gather missing data

Quantify NEB impact

Review impacts on costs, energy, and KPI/KPMs

Cocoa Co Projects and NEBs

- 3 Energy Efficiency Projects with 12.8% energy savings
 - Insulate Hot Product Tank: \$50k
 - Are there safety issues?
 - Fix Steam Leaks: \$2.5k
 - Are there safety issues?
 - 100% Condensate Recovery: \$50k
 - Water Savings
 - If do everything...
 - CO2 Emissions
 - Quality Improvements

Boiler 1 rev Last modified:	Oct 18, 2024	System Setup Assessment Diagram Repo	ort Sankey Calculators		C A ± 8 \$ \$ 4
Explore Opportunities	Modify All Conditions Expert View				Scenario 1 Selected Scenario
Adjust High Pressu	ure Condensate Recovery Rate		RESULTS	SANKEY	HELP
	Baseline	Modifications		Baseline	
Cond	lensate Recovery Rate	Condensate Recovery Rate			
	75%	100 %	Percent Savings (%)		
Adjust Low Pressu	re Condensate Recovery Rate				14.0%
	Baseline	Modifications	Fuel Usage (MMBtu/yr)	87,661.4	76,413.5
Cond	lensate Recovery Rate	Condensate Recovery Rate	Fuel Cost (\$/yr)	\$350,646	\$305,654
	75%	100 %	Electricity Purchased (kWh/yr)	0	0
			Electricity Cost (\$)	00	00
Flash Condensate	to Low Pressure		Water Usage (gal/yr)	2,044,449.1	152,197.2
			Water Cost (\$/yr)	4,089	304
Modify Condensate	e Return Temperature		Power Generated (kW)	0	0
	Baseline	Modifications	Process Use (MMBtu/yr)	54,946.7	49,452
R	Return Temperature	Return Temperature	Stack Loss (MMBtu/yr)	17,532.3	15,282.7
	150 °F		Vent Losses (MMBtu/yr)	79.8	69.6
	150 1	160 1	Unrecycled Condensate Losses (MMBtu/yr)	5,096.6	0
🗆 Adjust Heat Loss F	Percentages		Turbine Losses (MMBtu/yr)	0	0
Adjust Steam Dam	and/llaage		Other Losses (MMBtu/yr)	10.314.9	11,632.2
Aujust Steam Dem	ianu/osage		Annual Emissions (tonne CO ₂)	4,651.32	4,054.5
🗹 Adiust High Pressu	ure Steam Usage		Annual Emissions Savings (tonne CO2)	_	596.81
			Annual Cost (\$)	354,735	305,958
	Baseline	Modifications	Annual Savings (\$)	-	48,776
	Steam Usage	Steam Usage			
	5 klb/hr	4.5 klb/hr			
Adjust Low Pressu	re Steam Usage				
	Baseline	Modifications			
	Steam Usage	Steam Usage			
	10 klb/hr	9 klb/hr			

How to estimate? Talk to people!

- Safety
 - <u>https://www.osha.gov/</u> <u>safetypays/estimator</u>
 - Talk with Human Resources
 - Cost of intervention programs
 - Cost of days off
- Quality
 - Talk with Quality Team
 - Cost of production to point of waste

Carbon

- EPA Emissions Hub / MEASUR
- Internal Cost of Carbon
- Expenses
 - Maintenance Costs
 - Replacement Costs
 - Labor Costs
 - Other Materials / Utilities

How to estimate? Talk to people!

- Tank Insulation
 - Talked with Safety team
 - Someone gets burned at least every other year
 - Had to reroute Tour groups
 - <u>https://www.osha.gov/</u>
 <u>safetypays/estimator</u>

1. Select an injury type from the dron-down menu OR enter the total w	1. Select an injury type from the drop down many OD enter the total we down' componential sector						
 Select an injury type non-the drop down includion children the total will Enter the profit margin (leave blank to use default of 3%). 	orkers compensation costs.						
3. Enter the number of injuries (leave blank to use default of one).							
4. Select "Add/Calculate" to compute the total direct and indirect costs.							
5. Repeat the step to add additional injuries to the list.							
Injury Type	Select an Injury Type	\$					
	OR						
or							
Workers' Compensation Costs (annual sum of costs)							
Enter Profit Margin (%) (leave blank to use default of 3%)	3						

Injury Type	Instances	Direct Cost	Indirect Cost	Total Cost	Additional Sale (Indirect)	Additional Sale (Total)	
Burn	1	\$ 47,192	\$ 51,911	\$ 99,103	\$ 1,730,373	\$ 3,303,433	Remove

Cocoa Co Projects and NEBs

- 3 Energy Efficiency Projects with 12.8% energy savings
 - Insulate Hot Product Tank: \$50k
 - Safety NEB: \$55k/yr
 - Customer Relations NEB (Tours): \$2k/yr
 - Fix Steam Leaks: \$2.5k
 - No direct NEBs found
 - 100% Condensate Recovery: \$50k
 - Reduced water intake: \$3.8k/yr
 - 2 NEBs for entire project
 - Reduced Scope 1 Emissions (no direct cost benefit)
 - Reduced defects: \$46.8k/yr

KPI	КРМ	Baseline Cost (\$/yr)	<u>Annual Savings</u> <u>(\$/yr)</u>	Modified Cost (\$/yr)	Change (%)
Safety	OSHA Recordable Incidents	\$1,760,000	\$55,000	\$1,705,000	3.13 %
Quality	(\$) Defective Production	\$93,600	\$46,800	\$46,800	50 %
Water Consumption	Consumption Cost	\$10,000	\$3,800	\$6,200	38 %
Tours	Tours	\$40,000	\$2,000	\$38,000	5 %
Strategic Relationship Impact	Contribution to company's vision or strategy	Qualitative Metric			
CO, CO ₂ , NO _x , SO _x emissions	Scope 1 & Scope 2 Emissions		_	_	6.2 %
Totals		\$1,903,600	\$107,600	\$1,796,000	5.65 %

Cocoa Co. Results Report

- NEBs reduced payback from over 2 yr to less than 1!
- About 2/3 of cost reductions from NON Energy Efficiency
- Improves KPMs even if there are no cost benefits!

	Implementation Cost (\$)	Annual Energy Savings (\$/yr)	Annual Savings W/ NEBs (\$/yr)	Simple Payback (yrs)	Simple Payback With NEBs (yrs)
Steam Assessment		\$44,920	\$91,720	_	_
Insulate Melted Chocolate Tank	\$50,000		\$57,000	—	0.88
Steam Leaks at HP & LP	\$2,500		_	_	_
Condensate Recovery	\$50,000		\$3,800	_	13.16
Assessment Total	\$102,500	\$44,920	\$152,520	2.28	0.67

Percent Savings Contribution

Reduce Scope 1 & Scope 2 Emissions

Jam Board Break - Lighting

- 10% of all projects recommended by ITAC's are related to using more efficient lighting
- They have about a 70% implementation rate
- You've probably done a lighting project, but did you think of all the additional benefits?

Whiteboard Group Exercise- Results

Pay Back-Summary Report for all findings (Lighting)

With the safety NEB...

КРІ	KPM	Baseline Cost (\$/yr)	<u>Annual Savings (\$/yr)</u>	Modified Cost (\$/yr)	Change (%)
Safety	OSHA Recordable Incidents	\$250,000	\$32,000	\$218,000	12.8 %
Quality	(\$) Defective Production	\$93,600	\$4,680	\$88,920	5 %
Productivity	Cycle Time - Time to make goods	_	\$4,680	_	_
Maintenance Expense	Labor Costs	\$240,000	\$1,000	\$239,000	0 40 04
Expense Cost	Service Parts	\$100,000	\$875	\$99,125	
Maintenance Expense	Engineering support (\$ or hours)	\$120,000	-	\$120,000	
Cost Totals		\$803,600	\$43,235	\$760,365	

	Implementation Cost (\$)	Annual Energy Savings (\$/yr)	Annual Savings W/ NEBs (\$/yr)	Simple Payback (yrs)	Simple Payback With NEBs (yrs)
TH - Lighting Opp		_	_	_	_
Barring Room Lights	\$15,000	\$1,500	\$44,735	10	0.34
Assessment Total	\$15,000	\$1,500	\$44,735	10	0.34

Reduced noise, exposure & cost of hearing conservation program

Improved product quality - operator source

Increased Productivity

Reduced wear and tear, reduced replacement and repair parts

Barring Room Lights (Energy Cost) Savings

Pay Back-Summary Report for findings w/o Safety NEB (Lighting)

Without the safety NEB

КРІ	КРМ	Baseline Cost (\$/yr)	<u>Annual Savings (\$/yr)</u>	Modified Cost (\$/yr)	Change (%)
Quality	(\$) Defective Production	\$93,600	\$4,680	\$88,920	5 %
Productivity	Cycle Time - Time to make goods		\$4,680		—
Maintenance Expense	Labor Costs	\$240,000	\$1,000	\$239,000	0.42 %
Expense Cost	Service Parts	\$100,000	\$875	\$99,125	0.88 %
Cost Totals		\$433,600	\$11,235	\$422,365	2.59 %

	Implementation Cost (\$)	Annual Energy Savings (\$/yr)	Annual Savings W/ NEBs (\$/yr)	Simple Payback (yrs)	Simple Payback With NEBs (yrs)
TH - Lighting Opp	_		_	_	_
Barring Room Lights	\$15,000	\$1,500	\$12,735	10	1.18
Assessment Total	\$15,000	\$1,500	\$12,735	10	1.18

EXPILES 12/4/2001

Reduced noise, exposure & cost of hearing conservation program

Improved product quality - operator source

Increased Productivity

Reduced wear and tear, reduced replacement and repair parts

Barring Room Lights (Energy Cost) Savings

- NEBs- Often important to key decision makers
- NEBs- Find them by understanding the company, their processes and talking to people
- NEBs- Improved performance metrics
- NEBs- Will reduce payback period for energy projects
- NEBs -Support implementation

Questions?

NREL/PR-5700-92410

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Industrial Efficiency & Decarbonization Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Transforming ENERGY

Photo from iStock-627281636